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Abstract—The term clickbait is used to describe headlines or
other content that is designed to attract attention and clicks, often
by using sensationalized or misleading language. Clickbaiting
is a significant problem for online users, as it often leads to
low-quality content negatively impacting user engagement and
trust. However, the task of detecting click-bait titles automatically
can be challenging due to the wide variance in the wording
and structure of titles. Manually detecting them can also be
problematic because different people have different opinions
on what constitutes click-bait. Rule-based approaches, machine
learning models, deep learning models, and natural language
processing techniques are some of the existing methods for click-
bait detection. As good as these techniques are, they still need
customization and large amounts of training data to achieve good
accuracy. Since generative, pre-trained transformer models have
shown an inherent capability to understand the meanings of
sentences really well, our research examined the use of GPT-3.5,
and GPT-4 as zero-shot models. They resulted in a maximum test
accuracy of 88.5%, lower than some of the custom techniques
reported in previous research works of between 90% to 95%.
This indicates the need to go beyond a generic LLM. We then
fine-tune OpenAID’s Large Language Model (LLM) Ada using
an efficient dataset of only 1000 samples of clickbait and non-
clickbait titles to get a test accuracy of up to 99.5 %. The
research further shows that fine-tuning a GPT model is not only
more accurate but also uses a smaller amount of training data,
minimal coding, and cost-effective. Our research is indicative of
the broader possibility that fine-tuning a large language model is
all you need for most targeted natural language processing tasks.
All our research experiments used OpenAl APIs using Python
notebooks on Google Colab and the data and code are publicly
available in a GitHub repository.
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I. INTRODUCTION

There has been an exponential rise in the use of clickbait, a
type of sensationalized title designed to attract users’ attention
and persuade them to click on an associated URL. Clickbait
titles such as Which Zodiac Sign Should You Date Based
On Your Favourite Disney Character or This Quiz Will Tell
You Which Breakfast Cereal Matches Your Personality have
become increasingly common on news and social media
platforms. These types of titles, unlike non-clickbait titles such
as Arctic ice thickness decreasing, suggests satellite data study
or Basketball: Lakers score 102 to defeat the Celtics in Game 1
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of the 2010 NBA Finals, do not accurately describe the content
on the linked page. This can result in user dissatisfaction
and potentially dangerous consequences if an attacker infuses
malware with the click. Various methods have been proposed
to identify clickbaits, including using supervised machine
learning techniques such as SVM, random forest models, and
long-short term memory. In this research paper, we propose a
refined approach to detecting clickbait using openAl’s Ada, a
Large Language model based on the GPT-3 architecture.

Machine learning has made remarkable strides in recent
years owing to its impact in various areas today. Supervised
and unsupervised learning are two of the most significant
techniques used in machine learning. With supervised learning,
the machine is trained on labeled data, which means that each
data point has a label associated with it that helps define the
data. After being trained on this labeled data, the machine or
model is tested to see if it can accurately produce the desired
outcomes. On the other hand, unsupervised learning is used
when labeled data is unavailable. The machine is trained on
unlabeled data, and the model tries to predict the data on
its own [12]. One area of machine learning that has grown
significantly in recent years is Natural Language Processing
(NLP). NLP aims to devise algorithms on how to understand
human languages and generate replies that resemble those of
humans. NLP has become a crucial component in applications
such as chatbots, virtual assistants, and automatic translations
[10]. Businesses can now reach a wider audience and engage
with customers in a variety of languages. NLP has also made it
possible to recognize sentiment in text data, which has greatly
benefited the study of social media and customer service using
chatbots and virtual assistants. NLP has also made it possible
to create speech recognition technology leading to well-known
applications such as Siri and Alexa. Text sentiment identifica-
tion or text summarization have proved to be useful in social
media, journalism, and education [13].

The emergence of Transformer model has been particularly
useful as an efficient unifying model that has done well both
in NLP and visual tasks. This has led to the development
of Generative Pre-trained Transformers (GPTs), which were
trained using massive language datasets like the Wikipedia
Corpus and Common Crawl. The openAl’s GPT APIs provide
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access to the large language models trained on large corpora of
text from various sources. GPT-3, which stands for Generative
Pre-trained Transformer 3, is a state-of-the-art language model
developed by OpenAl. Released in June 2020, it is the third
iteration in the GPT series of models [10]. GPT-3 is a massive
model, with 175 billion parameters and trained on a diverse
range of internet text, allowing it to learn a vast amount of
information and develop a strong understanding of language
structure, grammar, and context. During the training phase,
GPT-3 learns to generate text by predicting the next word in
a sentence given its preceding context. There are different
models within the GPT-3 category with varying levels of
complexity, trained to do specific tasks better, and are available
for fine-tuning such as davinci, curie, ada and babbage with
varying price points for usage. As a point of reference, the
cost for fine-tuning Ada model at the time of writing this is
$0.0004 per 1000 tokens and for testing it is $0.0016 per 1000
tokens [3].

The likely futuristic evolution from an assorted collection
of custom machine learning models to custom transformer
models to fine-tuning large multi-modal models for language,
visual, and audio tasks is exemplified in Figure 1 in the context

of natural language processing. The scope of this paper is to
use the GPT large language models to do zero-shot testing,
and fine-tuning on a small set of training data of clickbait
and non-click bait titles and compare the classification results
both among the LLMs and also with previous work in the
area. In doing so, we report that the power of the LLMs
easily trump custom models in the prior work handily in
various metrics including cost, training time, and accuracy.
In the next section, we survey previous work in the literature
on classification of titles as clickbait and non clickbait. In
section III, we discuss the experimental setup, methodology,
followed by results in section IV. In section V, we present some
concluding observations and directions for further research.

II. PREVIOUS WORK

Previous research on identifying clickbait titles have used
a variety of approaches and models [6], highlighting the
challenging nature of the task to achieve high accuracy. [4].
Lahdji et al. [7] used a gradient-boosting classifier to train on
32,000 titles resulting in an accuracy of 95%. Chakraborty et
al. [1], conducted a study to detect and prevent clickbait in
online news media. The authors collected a dataset of 15,000
headlines from both clickbait and non-clickbait categories, and
used the Stanford CoreNLP tool to carry out a detailed linguis-
tic analysis. The authors used three different models (Support
Vector Machines, Decision Trees, and Random Forests) to
predict clickbait articles, and found that SVM performed the
best with 93% accuracy, 0.95 precision, and 0.9 recall. They
also developed a Chrome extension called ”Stop Clickbait”
which alerts users about clickbait and gives them the option
to block certain clickbait [1]. The extension was found to be
effective, correctly blocking an average of 89% of tested links
according to user feedback.

Shaikh and Annappanavar’s et al. [2], investigates clickbait
detection by analyzing the textual characteristics of a database
comprising over 50,000 articles, both clickbait, and non-
clickbait. Text data is word-embedded into vectors and used as
input to a CNN model using word2vec. The authors achieved
good results with an F1 score of 0.86 and a precision of 0.82
[2]. The results are obtained in the form of a confusion matrix,
which gives an accuracy of 82% [2].

The paper by Dimpas et al. [5], presents a different approach
to clickbait detection in both Filipino and English languages
using a BiLSTM (Bidirectional Long Short-Term Memory)
neural network architecture. The dataset for the study com-
prises 5,000 clickbait and 5,000 non-clickbait headlines for
both languages, collected from various web sources and web-
sites based in the Philippines. The neural network model is
built using the Keras API and Theano backend. The results of
the study show that the proposed model achieved an accuracy
of 93.50% for English and 92.87% for Filipino in detecting
clickbait headlines. The authors highlight the significance
of the BiLSTM architecture in the proposed model, as it
takes into account the context of the words both before and
after the current word, resulting in improved performance in
clickbait detection. The study presents a promising approach



for clickbait detection in multiple languages and provides a
useful contribution to the field of natural language processing
[5].

Daoud et al. [8], proposed a supervised machine learning
method to identify clickbait, using several variables based
on text, structure, sentiment, and readability. The method
employed machine learning techniques such as SVM, random
forest, and naive Bayes to classify articles as clickbait or non-
clickbait. The study achieved an F1 score of 79% and a ROC
curve area of 0.7, indicating a high level of accuracy. The
dataset consisted of 22,033 posts, with 2,495 posts used for
training and the rest for validation. The authors utilized SVM,
which takes each instance in the data set as a vector and plots
it within a high dimensional space, dividing each class by
building a hyperplane. By employing both the logistic regres-
sion and linear SVM techniques, they achieved an accuracy
of 79%. Agrawal et al. [9], conducted a study to develop a
model for clickbait detection using deep learning techniques.
The model was built using handcrafted features from three
fields: the teaser message or title, the linked web page, and
the meta information. They utilized a basic CNN with just one
convolutional layer, and the Click-Word2Vec model achieved
an accuracy of 90% and an ROC-AUC of 0.90.

In our research, we explore various ways of using LLMs to
improve the accuracy of detecting clickbait titles. In particular,
we carry out zero-shot testing on both GPT 3.5 and GPT 4
models, followed by fine-tuning Ada with varying number of
epochs, and ending with a novel iterative process of fine-tuning
Ada with 4 epochs per iteration and increasing the training
set size each time. In all of these, we find that our fine-tuning
approach beats both zero-shot and results reported in the prior
works above, yielding accuracy of between 96.5 to 99.5. In
the next section, we present details of our research description
and methodology.

ITII. RRESEARCH DESCRIPTION AND
METHODOLOGY

A. Dataset and Software Tools

In order to carry out our research, we used the Kaggle
dataset [14] which contains labeled titles of about 32,000 split
roughly 50% of clickbait and non-clickbait titles, labeled as
1 or O respectively. We used Google Colab’s Python as the
computing environment to access OpenAl API and pandas
library. The first step was to preprocess the dataset by con-
veriting it to the JSONL format, as required by OpenAl API,
using the fo_json function of pandas. The orient parameter is
set to records to ensure that the resulting JSON file contains
one record per line, and the lines parameter is set to True
to ensure that each record is written on a separate line. For
clarity, JSONL is a variation of JSON that is designed to
store multiple JSON objects in a more readable and scalable
way. In JSONL, each line of the file contains a valid JSON
object, and the objects are separated by newline characters.
This format makes it easier to process large datasets line by
line, allowing for more efficient streaming and processing of
the data, especially when working with big data or log files.

B. Zero-Shot vs Fine-Tuned Models

OpenAl’s data format for fine-tuning involves dividing the
data into prompts and completions, where the prompt is the
title and completion is true if the title is clickbait and false
otherwise. The data is then converted to JSONL format, with
column headings changed to ”prompt” and “completion”. In
our case, we also converted the completion values from 0 to
“False” and from 1 to ”True”. The resulting file must be in
the JSONL format, which is the only format accepted by the
API for fine-tuning. To prepare the data for input, we used
OpenAl’s library call /openai tools fine_tunes.prepare_data -f
file_name_jsonformat.jsonl -q [3]. This added a ’->’ at the end
of each prompt and added a space before the completion value.
The data was automatically split into training and validation
datasets for further analysis in our research.

import openai
def zero_shot_model(m):
openai.api_key = "API_KEY_VALUE"
model_engine = 'Models’
response =openai.ChatCompletion.create(model=model_engine,\
messages=[{"role":"system",\
"content": "Define_model_role"\
{"role":"user", \
"content":m}],\
n=1,\
temperature=8)
message =(response['choices'][@][ 'message’]['content'])
return message

Fig. 2. Function for testing zero shot models.

We first use the base models of GPT-3.5 and GPT-4
natively to do the clickbait prediction as described below.
A partial code of zero-shot is provided in Figure 2, where
a function named zero_shot_test performs testing a sample
random dataset using GPT-3.5 and GPT-4 models for clickbait
detection. We provide a prompt through the contentparameter,
which is used by the model to generate completions. We define
the model engine as either ”gpt-3.5” or “gpt-4” depending on
the model to be tested. We provide a prompt to the model
that defines the task of the model. The prompt is You are
a helpful assistant. For each of the following user titles,
say True if the title is a click-bait or say False otherwise.
Each title is separated by **** Your response should only
be either True or False printed on a separate line. The
model is asked to determine whether a given user title is
a clickbait or not by responding with either True or False.
We include the confent parameter in the prompt. Next, we
call the ChatCompletion.create() method with the defined
parameters to generate a completion from the model. The
response from the model is saved to the variable message.
Finally, the function returns the value generated by the model.
The output is a string representing the model’s prediction for
each user title in the input, separated by a new line. We
conducted experiments on a random dataset of 200 samples
on models gpr-3.5 turbo and gpt-4, as Model A and Model
B, respectively. The resulting accuracy was 73% and 88.5%
respectively for A and B, as shown in Figure 5. One can see
how good the base GPT-4 model is in detecting click-bait titles



without any fine-tuning at all and with a performance better
than some of the custom models in prior work.

We further wanted to explore the influence of one of the
hyperparameters namely, number of epochs. An epoch in the
OpenAl API is one full pass through the training dataset.
This means that each example in the dataset is presented to
the model once. The number of epochs is a hyperparameter
that can be tuned to improve the accuracy of the model. For
example, if you are training a model on a dataset of 100,000
examples, and you set the number of epochs to 10, then the
model will see each example 10 times. This will allow the
model to learn more accurately, but it will also take longer
to train. The optimal number of epochs depends on the size
of the dataset, the complexity of the model, and the available
resources. In this part of the research, the goal was to fine-
tune the Ada model using 1000 clickbait and non-clickbait
titles, which were fine-tuned for 4 and 20 epochs, respectively.
OpenAl models have a default epoch value of 4. We generated
two fine-tuned models of Ada one with 10 epochs and the
other with 4 epochs using the 1000 sample training dataset
called Model D and Model C respectively. The partial code in
Figure 3 shows how to fine-tune a model. The fine_tunes.create
system call is used to create the fine-tuned model, specifying
the training and validation files to be used for fine-tuning
with the -t and -v options, respectively. Correctly formating
the training samples into OpenAl API compatible JSON is a
crucial step. Here are two sample titles formatted in JSON.

e “prompt”:’15 Stunning Gift Wrapping Ideas For The

Minimalist In You”,’completion”:true
« “prompt”:”Allotting of Iraqi Oil Rights May Stoke Hos-

99 99

tility”,”completion”:false

import openai
import os
os.environ["OPENAI_API_KEY"] = "OPEN_API_KEY VALUE"
lopenai api fine tunes.create \
-t "file_name_prepared_train.jsonl" \
-v "fine_name_prepared_valid.jsonl" \
--compute_classification_metrics \
--classification_positive_class " True" \
-m ada \
--n_epochs 4

Fig. 3. Partial code for fine-tuning the Ada model.

To optimize the model’s performance, we included hyperpa-
rameters such as compute_classification_metrics and classifi-
cation_positive_class="true’. The former calculates accuracy,
ROC, recall, and F1 scores for each model, while the latter
sets the positive class to true. The -m option is used to
specify which model to fine-tune. The fine_tunes.follow system
command is used to track the fine-tuning process, while the
fine_tunes.cancel system command can be used to cancel it if
needed [3].

The accuracy of models generated were evaluated on an
unseen dataset consisting of 200 samples. In Figure 4, we

show the Completion.create() method to generate prediction as
text completion. To create a completion, we passed parameters
to the Completion. create() method which are the engine,
specifying the fine-tuned model, prompt specifying the input
prompt, max_tokens parameter specifying the maximum num-
ber of tokens that the model can generate in the completion,
logprobs parameter specifying the number of log probabilities
that the model returns for each token in the completion, and
temperature parameter setting the randomness of the model’s
output. Using the results generated, a performance comparison
of zero-shot models with the fine-tuned models is shown in
Figure 5. Figure 7 shows the confusion matrix for Model D,
illustrating the low number of FPs and FNs.

completions = openai.Completion.create(
engine=fine-tuned_model,
prompt=prompt,
max_tokens=1,
logprobs=2,
temperature=0

Fig. 4. Partial code for testing a fine-tuned model.
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C. Iterative Fine-Tuned Models

In the second approach, we iteratively fine-tuned the Ada
LLM model starting with a dataset of 200 clickbait and non-
clickbait title samples (roughly 50% each) for four epochs to
get a new fine-tuned model, testing the model’s accuracy on
200 unseen data samples, and increasing the data samples by
200 after each iteration. Then re-fine-tune for a new model
and so on. We repeated this process five times, generating
a new model after each fine-tuning iteration that we called
Model 1.2, Model 1.4, Model 1.6, Model 1.8 and Model 2
respectively. The dotted decimal representation represents a
way to indicate how many training samples were used. For
instance, Model 1.2 refers to training with 200 samples, Model



1.4 refers to training with an additional 200 samples for a total
of 400 samples, etc. Once again, we tested each model with
a dataset of 200 samples. The prediction accuracy for the five
iterated, fine-tuned models is shown in Figure 6.

IV. RESULTS AND COMPARISON

In Table 1 below, we have shown the models employed by
previous authors drawing a comparison of the performance of
such models with ours. Reviewing the table data, it is clear
that fine-tuned LLMs perform better than custom models from
previous search, and some by big margins. Our models beat
existing ones by a margin of anywhere from 4.5% to 20%.
It is also important to note that the improved performance
comes by way of increased developer time to find the right
tuning parameter contrasted with spending less development
and testing time, a smaller set of training data, and a lower
compute cost. Our OpenAl API usage cost a total of around
8 US dollars for all the models combined including training
and testing.

Furthermore, within our research, the models show different
capabilities. First, the zero-shot models of both GPT-25 and
GPT-4 are already superior to some of the hand-crafted models
[2], [8]. This confirms the power of the LLMs that we already
have come to appreciate in the short period of time they
have been around. However, Models C, D and the iterative,
fine-tuned models demonstrate that there are real performance
gains to be realized by massaging the LLMs with training data
for the particular application. The fine-tuned models show a
gain of between 5% to 10% over the zero-shot LLMs. We
expect this to be the case for many of the previously studied
NLP tasks, not just clickbait detection. One could conceivably
revisit all prior NLP research and hope to rewrite the results.
OpenAl has suggested that the default epoch of 4 is sort of
where they expect the best fine-tuning to happen. This seems
to be borne out in our experiments too, at least in this one
application. For instance, Model D was fine-tuned with the
default 4 epochs showing a slightly higher performance than
Model C with 10 epochs. This just means that more epochs do
not necessarily allow the fine-tuned model to generalize much
more perhaps due to over-fitting.

TABLE I

COMPARISON OF CLICKBAIT DETECTION RESULTS

Authors ML Model Clickbait
Accuracy

Daoud et al [8] SVM, RF, NB 79%
Shaik et al [2] CNN 82%
Agrawal et al. [9] | CNN 90%
Chakraborty et | SVM 93%
al. [1]
Dimpas et al [5] BiLSTM 93.5%
Lahdji et al. [7] GB 95%
Our research Zero-shot GPT-3.5-Turbo. | 73%
-same- Zero-shot GPT-4. 88.5%
-same- Fine-tuned 3.5, 20 epochs | 96.5%
-same- Fine-tuned 3.5, 4 epochs 99.5%
-same- Fine-tuned iterative 98.5%
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Fig. 6. Accuracy of Fine-tuned Models using the Iterative Approach

A. Data And Code Repository

The GitHub repository [15] contains both the data and code
used for this research. The repository consists of the dataset
files used for each model, test datasets, and code used for data
pre-processing, fine-tuning, and model testing.

Confusion Matrix
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Fig. 7. Confusion matrix for Model D.

V. DISCUSSION AND CONCLUSION

Our research suggests that fine-tuning Open AI’s large
language model using substantially smaller training set and
lower model development time, is an effective approach to
detecting clickbait titles. Furthermore, we demonstrate that
despite the widely-accepted notion that the LLMs (OpenAl)
are already quite good in natural language understanding
and interpretation, they still can be fine-tuned to improve
their performance by a significant margin in custom tasks.
We further observe that, the improvement in performance
likely comes at a lower compute cost than previously studied
approaches. Currently, there is still some effort that needs to
go into tuning the hyperparameters or a following a different



approach like iterative refinement to improve performance. It is
perhaps not inconceivable that the fine-tuning of an LLM itself
may be learned using ML models in the future. We expect fine-
tuned LLMs to show across-the-board gains on performance
over custom NLP tasks that have been previously studied in
the context of medicine, law, etc. Now, going beyond LLMs
to large multi-modal models one can well imagine the tidal
shift in future machine learning research.
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